Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Disaster Med Public Health Prep ; : 1-9, 2022 Jun 09.
Article in English | MEDLINE | ID: covidwho-2320277

ABSTRACT

OBJECTIVES: To evaluate how key aspects of New York State Ventilator Allocation Guidelines (NYSVAG)-Sequential Organ Failure Assessment score criteria and ventilator time trials -might perform with respect to the frequency of ventilator reallocation and survival to hospital discharge in a simulated cohort of coronavirus disease (COVID-19) patients. METHODS: Single center retrospective observational and simulation cohort study of 884 critically ill COVID-19 patients undergoing ventilator allocation per NYSVAG. RESULTS: In total, 742 patients (83.9%) would have had their ventilator reallocated during the 11-day observation period, 280 (37.7%) of whom would have otherwise survived to hospital discharge if provided with a ventilator. Only 65 (18.1%) of the observed surviving patients would have survived by NYSVAG. Extending ventilator time trials from 2 to 5 days resulted in a 49.2% increase in simulated survival to discharge. CONCLUSIONS: In the setting of a protracted respiratory pandemic, implementation of NYSVAG or similar protocols could lead to a high degree of ventilator reallocation, including withdrawal from patients who might otherwise survive. Longer ventilator time trials might lead to improved survival for COVID-19 patients given their protracted respiratory failure. Further studies are needed to understand the survival of patients receiving reallocated ventilators to determine whether implementation of NYSVAG would improve overall survival.

2.
PLoS One ; 15(12): e0243027, 2020.
Article in English | MEDLINE | ID: covidwho-2270795

ABSTRACT

BACKGROUND: New York City (NYC) bore the greatest burden of COVID-19 in the United States early in the pandemic. In this case series, we describe characteristics and outcomes of racially and ethnically diverse patients tested for and hospitalized with COVID-19 in New York City's public hospital system. METHODS: We reviewed the electronic health records of all patients who received a SARS-CoV-2 test between March 5 and April 9, 2020, with follow up through April 16, 2020. The primary outcomes were a positive test, hospitalization, and death. Demographics and comorbidities were also assessed. RESULTS: 22254 patients were tested for SARS-CoV-2. 13442 (61%) were positive; among those, the median age was 52.7 years (interquartile range [IQR] 39.5-64.5), 7481 (56%) were male, 3518 (26%) were Black, and 4593 (34%) were Hispanic. Nearly half (4669, 46%) had at least one chronic disease (27% diabetes, 30% hypertension, and 21% cardiovascular disease). Of those testing positive, 6248 (46%) were hospitalized. The median age was 61.6 years (IQR 49.7-72.9); 3851 (62%) were male, 1950 (31%) were Black, and 2102 (34%) were Hispanic. More than half (3269, 53%) had at least one chronic disease (33% diabetes, 37% hypertension, 24% cardiovascular disease, 11% chronic kidney disease). 1724 (28%) hospitalized patients died. The median age was 71.0 years (IQR 60.0, 80.9); 1087 (63%) were male, 506 (29%) were Black, and 528 (31%) were Hispanic. Chronic diseases were common (35% diabetes, 37% hypertension, 28% cardiovascular disease, 15% chronic kidney disease). Male sex, older age, diabetes, cardiac history, and chronic kidney disease were significantly associated with testing positive, hospitalization, and death. Racial/ethnic disparities were observed across all outcomes. CONCLUSIONS AND RELEVANCE: This is the largest and most racially/ethnically diverse case series of patients tested and hospitalized for COVID-19 in New York City to date. Our findings highlight disparities in outcomes that can inform prevention and testing recommendations.


Subject(s)
COVID-19 , Ethnicity , Hospitals, Public , Pandemics , SARS-CoV-2 , Adolescent , Adult , Age Factors , Aged , COVID-19/ethnology , COVID-19/mortality , COVID-19/therapy , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Male , Middle Aged , New York City/epidemiology , New York City/ethnology , Retrospective Studies , Risk Factors , Sex Factors
3.
Chest ; 164(1): 124-136, 2023 07.
Article in English | MEDLINE | ID: covidwho-2282327

ABSTRACT

BACKGROUND: The COVID-19 pandemic has led to unprecedented mental health disturbances, burnout, and moral distress among health care workers, affecting their ability to care for themselves and their patients. RESEARCH QUESTION: In health care workers, what are key systemic factors and interventions impacting mental health and burnout? STUDY DESIGN AND METHODS: The Workforce Sustainment subcommittee of the Task Force for Mass Critical Care (TFMCC) utilized a consensus development process, incorporating evidence from literature review with expert opinion through a modified Delphi approach to determine factors affecting mental health, burnout, and moral distress in health care workers, to propose necessary actions to help prevent these issues and enhance workforce resilience, sustainment, and retention. RESULTS: Consolidation of evidence gathered from literature review and expert opinion resulted in 197 total statements that were synthesized into 14 major suggestions. These suggestions were organized into three categories: (1) mental health and well-being for staff in medical settings; (2) system-level support and leadership; and (3) research priorities and gaps. Suggestions include both general and specific occupational interventions to support health care worker basic physical needs, lower psychological distress, reduce moral distress and burnout, and foster mental health and resilience. INTERPRETATION: The Workforce Sustainment subcommittee of the TFMCC offers evidence-informed operational strategies to assist health care workers and hospitals plan, prevent, and treat the factors affecting health care worker mental health, burnout, and moral distress to improve resilience and retention following the COVID-19 pandemic.


Subject(s)
Burnout, Professional , COVID-19 , Disasters , Humans , COVID-19/epidemiology , Pandemics , Consensus , Health Personnel/psychology , Critical Care , Workforce , Burnout, Professional/epidemiology , Burnout, Professional/prevention & control , Burnout, Professional/psychology , Delivery of Health Care
4.
Crit Care Explor ; 5(1): e0827, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2252114

ABSTRACT

Vascular dysfunction and capillary leak are common in critically ill COVID-19 patients, but identification of endothelial pathways involved in COVID-19 pathogenesis has been limited. Angiopoietin-like 4 (ANGPTL4) is a protein secreted in response to hypoxic and nutrient-poor conditions that has a variety of biological effects including vascular injury and capillary leak. OBJECTIVES: To assess the role of ANGPTL4 in COVID-19-related outcomes. DESIGN SETTING AND PARTICIPANTS: Two hundred twenty-five COVID-19 ICU patients were enrolled from April 2020 to May 2021 in a prospective, multicenter cohort study from three different medical centers, University of Washington, University of Southern California and New York University. MAIN OUTCOMES AND MEASURES: Plasma ANGPTL4 was measured on days 1, 7, and 14 after ICU admission. We used previously published tissue proteomic data and lung single nucleus RNA (snRNA) sequencing data from specimens collected from COVID-19 patients to determine the tissues and cells that produce ANGPTL4. RESULTS: Higher plasma ANGPTL4 concentrations were significantly associated with worse hospital mortality (adjusted odds ratio per log2 increase, 1.53; 95% CI, 1.17-2.00; p = 0.002). Higher ANGPTL4 concentrations were also associated with higher proportions of venous thromboembolism and acute respiratory distress syndrome. Longitudinal ANGPTL4 concentrations were significantly different during the first 2 weeks of hospitalization in patients who subsequently died compared with survivors (p for interaction = 8.1 × 10-5). Proteomics analysis demonstrated abundance of ANGPTL4 in lung tissue compared with other organs in COVID-19. ANGPTL4 single-nuclear RNA gene expression was significantly increased in pulmonary alveolar type 2 epithelial cells and fibroblasts in COVID-19 lung tissue compared with controls. CONCLUSIONS AND RELEVANCE: ANGPTL4 is expressed in pulmonary epithelial cells and fibroblasts and is associated with clinical prognosis in critically ill COVID-19 patients.

5.
Health Secur ; 21(2): 146-155, 2023.
Article in English | MEDLINE | ID: covidwho-2269505

ABSTRACT

Similar to the early phases of the COVID-19 pandemic, New York City was the national epicenter of the ongoing 2022 mpox (formerly monkeypox) outbreak. Cases quickly began to rise in July 2022, primarily in gay, bisexual, or other men who have sex with men. Tools in the form of a reliable diagnostic test, an effective vaccine, and a viable treatment option have been available from the onset, although logistically complex to roll out. The special pathogens program at NYC Health + Hospitals/Bellevue, the flagship facility for the largest public hospital system in the United States, collaborated with multiple departments within Bellevue, the hospital system, and the NYC Department of Health and Mental Hygiene, to swiftly establish ambulatory testing, immunizations, patient-centered inpatient care, and outpatient therapeutics. With the ongoing mpox outbreak, hospitals and local health departments must prepare a systemwide response to identify and isolate patients and provide high-quality care. Findings from our experience can help guide institutions in developing a multipronged, comprehensive response to the ongoing mpox outbreak.


Subject(s)
COVID-19 , Monkeypox , Sexual and Gender Minorities , Male , Humans , New York City/epidemiology , COVID-19/epidemiology , Homosexuality, Male , Pandemics , Safety-net Providers , Disease Outbreaks/prevention & control
6.
Crit Care Med ; 51(4): 445-459, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2238702

ABSTRACT

OBJECTIVES: The COVID-19 pandemic threatened standard hospital operations. We sought to understand how this stress was perceived and manifested within individual hospitals and in relation to local viral activity. DESIGN: Prospective weekly hospital stress survey, November 2020-June 2022. SETTING: Society of Critical Care Medicine's Discovery Severe Acute Respiratory Infection-Preparedness multicenter cohort study. SUBJECTS: Thirteen hospitals across seven U.S. health systems. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We analyzed 839 hospital-weeks of data over 85 pandemic weeks and five viral surges. Perceived overall hospital, ICU, and emergency department (ED) stress due to severe acute respiratory infection patients during the pandemic were reported by a mean of 43% ( sd , 36%), 32% (30%), and 14% (22%) of hospitals per week, respectively, and perceived care deviations in a mean of 36% (33%). Overall hospital stress was highly correlated with ICU stress (ρ = 0.82; p < 0.0001) but only moderately correlated with ED stress (ρ = 0.52; p < 0.0001). A county increase in 10 severe acute respiratory syndrome coronavirus 2 cases per 100,000 residents was associated with an increase in the odds of overall hospital, ICU, and ED stress by 9% (95% CI, 5-12%), 7% (3-10%), and 4% (2-6%), respectively. During the Delta variant surge, overall hospital stress persisted for a median of 11.5 weeks (interquartile range, 9-14 wk) after local case peak. ICU stress had a similar pattern of resolution (median 11 wk [6-14 wk] after local case peak; p = 0.59) while the resolution of ED stress (median 6 wk [5-6 wk] after local case peak; p = 0.003) was earlier. There was a similar but attenuated pattern during the Omicron BA.1 subvariant surge. CONCLUSIONS: During the COVID-19 pandemic, perceived care deviations were common and potentially avoidable patient harm was rare. Perceived hospital stress persisted for weeks after surges peaked.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Cohort Studies , Prospective Studies , Hospitals
7.
J Surg Res ; 283: 1026-1032, 2023 03.
Article in English | MEDLINE | ID: covidwho-2230720

ABSTRACT

INTRODUCTION: Tracheostomy in patients with COVID-19 is a controversial and difficult clinical decision. We hypothesized that a recently validated COVID-19 Severity Score (CSS) would be associated with survival in patients considered for tracheostomy. METHODS: We reviewed 77 mechanically ventilated COVID-19 patients evaluated for decision for percutaneous dilational tracheostomy (PDT) from March to June 2020 at a public tertiary care center. Decision for PDT was based on clinical judgment of the screening surgeons. The CSS was retrospectively calculated using mean biomarker values from admission to time of PDT consult. Our primary outcome was survival to discharge, and all patient charts were reviewed through August 31, 2021. ROC curve and Youden index were used to estimate an optimal cut-point for survival. RESULTS: The mean CSS for 42 survivors significantly differed from that of 35 nonsurvivors (CSS 52 versus 66, P = 0.003). The Youden index returned an optimal CSS of 55 (95% confidence interval 43-72), which was associated with a sensitivity of 0.8 and a specificity of 0.6. The median CSS was 40 (interquartile range 27, 49) in the lower CSS (<55) group and 72 (interquartile range 66, 93) in the high CSS (≥55 group). Eighty-seven percent of lower CSS patients underwent PDT, with 74% survival, whereas 61% of high CSS patients underwent PDT, with only 41% surviving. Patients with high CSS had 77% lower odds of survival (odds ratio = 0.2, 95% confidence interval 0.1-0.7). CONCLUSIONS: Higher CSS was associated with decreased survival in patients evaluated for PDT, with a score ≥55 predictive of mortality. The novel CSS may be a useful adjunct in determining which COVID-19 patients will benefit from tracheostomy. Further prospective validation of this tool is warranted.


Subject(s)
COVID-19 , Tracheostomy , Humans , COVID-19/diagnosis , COVID-19/therapy , Retrospective Studies
8.
Health Secur ; 20(S1): S107-S113, 2022 06.
Article in English | MEDLINE | ID: covidwho-2134703
9.
Health Secur ; 20(S1): S39-S48, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-2097254

ABSTRACT

Infectious disease outbreaks and pandemics have repeatedly threatened public health and have severely strained healthcare delivery systems throughout the past century. Pathogens causing respiratory illness, such as influenza viruses and coronaviruses, as well as the highly communicable viral hemorrhagic fevers, pose a large threat to the healthcare delivery system in the United States and worldwide. Through the Hospital Preparedness Program, within the US Department of Health and Human Services Office of the Assistant Secretary for Preparedness and Response, a nationwide Regional Ebola Treatment Network (RETN) was developed, building upon a state- and jurisdiction-based tiered hospital approach. This network, spearheaded by the National Emerging Special Pathogens Training and Education Center, developed a conceptual framework and plan for the evolution of the RETN into the National Special Pathogen System of Care (NSPS). Building the NSPS strategy involved reviewing the literature and the initial framework used in forming the RETN and conducting an extensive stakeholder engagement process to identify gaps and develop solutions. From this, the NSPS strategy and implementation plan were formed. The resulting NSPS strategy is an ambitious but critical effort that will have impacts on the mitigation efforts of special pathogen threats for years to come.


Subject(s)
Coronavirus Infections , Hemorrhagic Fever, Ebola , Coronavirus Infections/epidemiology , Disease Outbreaks/prevention & control , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Humans , Pandemics , Public Health , United States
10.
Health Secur ; 20(S1): S4-S12, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-2097251

ABSTRACT

The National Emerging Special Pathogens Training and Education Center (NETEC) was established in 2015 to improve the capabilities of healthcare facilities to provide safe and effective care to patients with Ebola and other special pathogens in the United States. Through NETEC, a collaborative network of 10 Regional Emerging Special Pathogen Treatment Centers (RESPTCs) undertook readiness activities that included potential respiratory pathogens. These preparations, which took place before the COVID-19 pandemic, established a foundation of readiness that enabled RESPTCs to play a pivotal role in the US COVID-19 pandemic response. As initial COVID-19 cases were detected in the United States, RESPTCs provided essential isolation capacity, supplies, and subject matter expertise that allowed for additional time for healthcare systems to prepare. Through the Special Pathogen Research Network, RESPTCs rapidly enrolled patients into early clinical trials. During periods of high community transmission, RESPTCs provided educational, clinical, and logistical support to a wide range of healthcare and nonhealthcare settings. In this article, we describe how NETEC and the RESPTC network leveraged this foundation of special pathogen readiness to strengthen the national healthcare system's response to the COVID-19 pandemic. NETEC and the RESPTC network have proven to be an effective model that can support the national response to future emerging special pathogens.


Subject(s)
COVID-19 , Hemorrhagic Fever, Ebola , Humans , Infection Control , Pandemics/prevention & control , Patient Isolation , United States/epidemiology
11.
Crit Care Explor ; 4(10): e0773, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2087871

ABSTRACT

Respiratory virus infections cause significant morbidity and mortality ranging from mild uncomplicated acute respiratory illness to severe complications, such as acute respiratory distress syndrome, multiple organ failure, and death during epidemics and pandemics. We present a protocol to systematically study patients with severe acute respiratory infection (SARI), including severe acute respiratory syndrome coronavirus 2, due to respiratory viral pathogens to evaluate the natural history, prognostic biomarkers, and characteristics, including hospital stress, associated with clinical outcomes and severity. DESIGN: Prospective cohort study. SETTING: Multicenter cohort of patients admitted to an acute care ward or ICU from at least 15 hospitals representing diverse geographic regions across the United States. PATIENTS: Patients with SARI caused by infection with respiratory viruses that can cause outbreaks, epidemics, and pandemics. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Measurements include patient demographics, signs, symptoms, and medications; microbiology, imaging, and associated tests; mechanical ventilation, hospital procedures, and other interventions; and clinical outcomes and hospital stress, with specimens collected on days 0, 3, and 7-14 after enrollment and at discharge. The primary outcome measure is the number of consecutive days alive and free of mechanical ventilation (VFD) in the first 30 days after hospital admission. Important secondary outcomes include organ failure-free days before acute kidney injury, shock, hepatic failure, disseminated intravascular coagulation, 28-day mortality, adaptive immunity, as well as immunologic and microbiologic outcomes. CONCLUSIONS: SARI-Preparedness is a multicenter study under the collaboration of the Society of Critical Care Medicine Discovery, Resilience Intelligence Network, and National Emerging Special Pathogen Training and Education Center, which seeks to improve understanding of prognostic factors associated with worse outcomes and increased resource utilization. This can lead to interventions to mitigate the clinical impact of respiratory virus infections associated with SARI.

13.
Crit Care Explor ; 2(8): e0188, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1795082

ABSTRACT

To explore demographics, comorbidities, transfers, and mortality in critically ill patients with confirmed severe acute respiratory syndrome coronavirus 2. DESIGN: Retrospective cohort study. SETTING: Data were collected from a large tertiary care public hospital ICU that is part of the largest public healthcare network in the United States. PATIENTS: One-hundred thirty-seven adult (≥ 18 yr old) ICU patients admitted between March 10, 2020, and April 7, 2020, with follow-up collected through May 18, 2020. INTERVENTIONS: None. MEASUREMENTS: Demographic, clinical, laboratory, treatment, and outcome data extracted from electronic medical records. MAIN RESULTS: The majority of patients were male (99/137; 72.3%) and older than 50 years old (108/137; 78.9%). The most reported ethnicity and race were Hispanic (61/137; 44.5%) and Black (23/137; 16.7%). One-hundred six of 137 patients had at least one comorbidity (77.4%). One-hundred twenty-one of 137 (78.1%) required mechanical ventilation of whom 30 (24.8%) moved to tracheostomy and 46 of 137 (33.6%) required new onset renal replacement therapy. Eighty-two of 137 patients (59.9%) died after a median of 8 days (interquartile range 5-15 d) in the ICU. Male sex had a trend toward a higher hazard of death (hazard ratio, 2.1 [1.1-4.0]) in the multivariable Cox model. CONCLUSIONS: We report a mortality rate of 59.9% in a predominantly Hispanic and Black patient population. A significant association between comorbidities and mortality was not found in multivariable regression, and further research is needed to study factors that impact mortality in critical coronavirus disease 2019 patients. We also describe how a public hospital developed innovative approaches to safely manage a large volume of interhospital transfers and admitted patients.

14.
Critical Care Medicine ; 50:42-42, 2022.
Article in English | Academic Search Complete | ID: covidwho-1591248

ABSTRACT

The survey assessed hospital stress ordinally and also assessed ED and ICU stress and deviations from standard operating procedures. During one December 2020 week, hospital stress, ICU stress, and care deviations were all present at 100% of reporting sites. B Introduction: b Hospitals experienced substantial stress during the COVID-19 pandemic - threats to standard operations - but it is not well known how this stress manifested at individual hospitals. [Extracted from the article] Copyright of Critical Care Medicine is the property of Lippincott Williams & Wilkins and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

15.
Am Surg ; 87(11): 1775-1782, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1511589

ABSTRACT

BACKGROUND: The COVID-19 pandemic overwhelmed New York City hospitals early in the pandemic. Shortages of ventilators and sedatives prompted tracheostomy earlier than recommended by professional societies. This study evaluates the impact of percutaneous dilational tracheostomy (PDT) in COVID+ patients on critical care capacity. METHODS: This is a single-institution prospective case series of mechanically ventilated COVID-19 patients undergoing PDT from April 1 to June 4, 2020 at a public tertiary care center. RESULTS: Fifty-five patients met PDT criteria and underwent PDT at a median of 13 days (IQR 10, 18) from intubation. Patient characteristics are found in Table 1. Intravenous midazolam, fentanyl, and cisatracurium equivalents were significantly reduced 48 hours post-PDT (Table 2). Thirty-five patients were transferred from the ICU and liberated from the ventilator. Median time from PDT to ventilator liberation and ICU discharge was 10 (IQR 4, 14) and 12 (IQR 8, 17) days, respectively. Decannulation occurred in 45.5% and 52.7% were discharged from acute inpatient care (Figure 1). Median follow-up for the study was 62 days. Four patients had bleeding complications postoperatively and 11 died during the study period. Older age was associated with increased odds of complication (OR 1.12, 95% CI 1.04, 1.23) and death (OR=1.15, 95% CI 1.05, 1.30). All operators tested negative for COVID-19 during the study period. CONCLUSION: These findings suggest COVID-19 patients undergoing tracheostomy within the standard time frame can improve critical care capacity in areas strained by the pandemic with low risk to operators. Long-term outcomes after PDT deserve further study.


Subject(s)
COVID-19/surgery , Critical Care/statistics & numerical data , Patient Acceptance of Health Care/statistics & numerical data , Tracheostomy/statistics & numerical data , Age Factors , COVID-19/epidemiology , Female , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , New York City/epidemiology , Prospective Studies , Respiration, Artificial/statistics & numerical data , Time Factors , Tracheostomy/adverse effects , Tracheostomy/methods , Treatment Outcome , Ventilator Weaning/statistics & numerical data
16.
World J Crit Care Med ; 10(5): 204-219, 2021 Sep 09.
Article in English | MEDLINE | ID: covidwho-1456453

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has stretched our healthcare system to the brink, highlighting the importance of efficient resource utilization without compromising healthcare provider safety. While advanced imaging is a great resource for diagnostic purposes, the risk of contamination and infection transmission is high and requires extensive logistical planning for intrahospital patient transport, healthcare provider safety, and post-imaging decontamination. This dilemma has necessitated the transition to more bedside imaging. More so than ever, during the current pandemic, the clinical utility and importance of point-of-care ultrasound (POCUS) cannot be overstressed. It allows for safe and efficient beside procedural guidance and provides front line providers with valuable diagnostic information that can be acted upon in real-time for immediate clinical decision-making. The authors have been routinely using POCUS for the management of COVID-19 patients both in the emergency department and in intensive care units turned into "COVID-units." In this article, we review the nuances of using POCUS in a pandemic situation and maximizing diagnostic output from this bedside technology. Additionally, we review various methods and diagnostic uses of POCUS which can replace conventional imaging and bridge current literature and common clinical practices in critically ill patients. We discuss practical guidance and pertinent review of the literature for the most relevant procedural and diagnostic guidance of respiratory illness, hemodynamic decompensation, renal failure, and gastrointestinal disorders experienced by many patients admitted to COVID-units.

17.
Crit Care Med ; 49(9): 1439-1450, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1434523

ABSTRACT

OBJECTIVES: To evaluate the impact of ICU surge on mortality and to explore clinical and sociodemographic predictors of mortality. DESIGN: Retrospective cohort analysis. SETTING: NYC Health + Hospitals ICUs. PATIENTS: Adult ICU patients with coronavirus disease 2019 admitted between March 24, and May 12, 2020. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Hospitals reported surge levels daily. Uni- and multivariable analyses were conducted to assess factors impacting in-hospital mortality. Mortality in Hispanic patients was higher for high/very high surge compared with low/medium surge (69.6% vs 56.4%; p = 0.0011). Patients 65 years old and older had similar mortality across surge levels. Mortality decreased from high/very high surge to low/medium surge in, patients 18-44 years old and 45-64 (18-44 yr: 46.4% vs 27.3%; p = 0.0017 and 45-64 yr: 64.9% vs 53.2%; p = 0.002), and for medium, high, and very high poverty neighborhoods (medium: 69.5% vs 60.7%; p = 0.019 and high: 71.2% vs 59.7%; p = 0.0078 and very high: 66.6% vs 50.7%; p = 0.0003). In the multivariable model high surge (high/very high vs low/medium odds ratio, 1.4; 95% CI, 1.2-1.8), race/ethnicity (Black vs White odds ratio, 1.5; 95% CI, 1.1-2.0 and Asian vs White odds ratio 1.5; 95% CI, 1.0-2.3; other vs White odds ratio 1.5, 95% CI, 1.0-2.3), age (45-64 vs 18-44 odds ratio, 2.0; 95% CI, 1.6-2.5 and 65-74 vs 18-44 odds ratio, 5.1; 95% CI, 3.3-8.0 and 75+ vs 18-44 odds ratio, 6.8; 95% CI, 4.7-10.1), payer type (uninsured vs commercial/other odds ratio, 1.7; 95% CI, 1.2-2.3; medicaid vs commercial/other odds ratio, 1.3; 95% CI, 1.1-1.5), neighborhood poverty (medium vs low odds ratio 1.6, 95% CI, 1.0-2.4 and high vs low odds ratio, 1.8; 95% CI, 1.3-2.5), comorbidities (diabetes odds ratio, 1.6; 95% CI, 1.2-2.0 and asthma odds ratio, 1.4; 95% CI, 1.1-1.8 and heart disease odds ratio, 2.5; 95% CI, 2.0-3.3), and interventions (mechanical ventilation odds ratio, 8.8; 95% CI, 6.1-12.9 and dialysis odds ratio, 3.0; 95% CI, 1.9-4.7) were significant predictors for mortality. CONCLUSIONS: Patients admitted to ICUs with higher surge scores were at greater risk of death. Impact of surge levels on mortality varied across sociodemographic groups.


Subject(s)
COVID-19/mortality , Hospital Mortality/trends , Adolescent , Adult , Aged , Analysis of Variance , Female , Hospital Mortality/ethnology , Hospitals, Public/statistics & numerical data , Humans , Intensive Care Units , Male , Middle Aged , New York City/epidemiology , Odds Ratio , Patient Transfer/statistics & numerical data , Retrospective Studies , Young Adult
18.
Respir Care ; 66(11): 1673-1683, 2021 11.
Article in English | MEDLINE | ID: covidwho-1410801

ABSTRACT

BACKGROUND: The novel coronavirus-associated ARDS (COVID-19 ARDS) often requires invasive mechanical ventilation. A spectrum of atypical ARDS with different phenotypes (high vs low static compliance) has been hypothesized in COVID-19. METHODS: We conducted a retrospective analysis to identify respiratory mechanics in COVID-19 ARDS. Berlin definition was used to categorize severity of ARDS. Correlational analysis using t test, chi-square test, ANOVA test, and Pearson correlation was used to identify relationship between subject variables and respiratory mechanics. The primary outcome was duration of mechanical ventilation. Secondary outcomes were correlation between fluid status, C- reactive protein, PEEP, and D-dimer with respiratory and ventilatory parameters. RESULTS: Median age in our cohort was 60.5 y with predominantly male subjects. Up to 53% subjects were classified as severe ARDS (median [Formula: see text] = 86) with predominantly low static compliance (median Cst- 25.5 mL/cm H2O). The overall mortality in our cohort was 61%. The total duration of mechanical ventilation was 35 d in survivors and 14 d in nonsurvivors. High PEEP (r = 0.45, P < .001) and D-dimer > 2,000 ng/dL (P = .009) correlated with significant increase in physiologic dead space without significant correlation with [Formula: see text]. Higher net fluid balance was inversely related to static compliance (r = -0.24, P = .045), and elevation in C- reactive protein was inversely related to [Formula: see text] (r = -0.32, P = .02). CONCLUSIONS: In our cohort of mechanically ventilated COVID-19 ARDS subjects, high PEEP and D-dimer were associated with increase in physiologic dead space without significant effect on oxygenation, raising the question of potential microvascular dysfunction.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Inflammation , Male , Respiratory Distress Syndrome/etiology , Respiratory Mechanics , Retrospective Studies , SARS-CoV-2
19.
Chest ; 161(2): 429-447, 2022 02.
Article in English | MEDLINE | ID: covidwho-1401309

ABSTRACT

BACKGROUND: After the publication of a 2014 consensus statement regarding mass critical care during public health emergencies, much has been learned about surge responses and the care of overwhelming numbers of patients during the COVID-19 pandemic. Gaps in prior pandemic planning were identified and require modification in the midst of severe ongoing surges throughout the world. RESEARCH QUESTION: A subcommittee from The Task Force for Mass Critical Care (TFMCC) investigated the most recent COVID-19 publications coupled with TFMCC members anecdotal experience in order to formulate operational strategies to optimize contingency level care, and prevent crisis care circumstances associated with increased mortality. STUDY DESIGN AND METHODS: TFMCC adopted a modified version of established rapid guideline methodologies from the World Health Organization and the Guidelines International Network-McMaster Guideline Development Checklist. With a consensus development process incorporating expert opinion to define important questions and extract evidence, the TFMCC developed relevant pandemic surge suggestions in a structured manner, incorporating peer-reviewed literature, "gray" evidence from lay media sources, and anecdotal experiential evidence. RESULTS: Ten suggestions were identified regarding staffing, load-balancing, communication, and technology. Staffing models are suggested with resilience strategies to support critical care staff. ICU surge strategies and strain indicators are suggested to enhance ICU prioritization tactics to maintain contingency level care and to avoid crisis triage, with early transfer strategies to further load-balance care. We suggest that intensivists and hospitalists be engaged with the incident command structure to ensure two-way communication, situational awareness, and the use of technology to support critical care delivery and families of patients in ICUs. INTERPRETATION: A subcommittee from the TFMCC offers interim evidence-informed operational strategies to assist hospitals and communities to plan for and respond to surge capacity demands resulting from COVID-19.


Subject(s)
Advisory Committees , COVID-19 , Critical Care , Delivery of Health Care/organization & administration , Surge Capacity , Triage , COVID-19/epidemiology , COVID-19/therapy , Critical Care/methods , Critical Care/organization & administration , Evidence-Based Practice/methods , Evidence-Based Practice/organization & administration , Humans , SARS-CoV-2 , Surge Capacity/organization & administration , Surge Capacity/standards , Triage/methods , Triage/standards , United States/epidemiology
20.
Nat Microbiol ; 6(10): 1245-1258, 2021 10.
Article in English | MEDLINE | ID: covidwho-1380902

ABSTRACT

Respiratory failure is associated with increased mortality in COVID-19 patients. There are no validated lower airway biomarkers to predict clinical outcome. We investigated whether bacterial respiratory infections were associated with poor clinical outcome of COVID-19 in a prospective, observational cohort of 589 critically ill adults, all of whom required mechanical ventilation. For a subset of 142 patients who underwent bronchoscopy, we quantified SARS-CoV-2 viral load, analysed the lower respiratory tract microbiome using metagenomics and metatranscriptomics and profiled the host immune response. Acquisition of a hospital-acquired respiratory pathogen was not associated with fatal outcome. Poor clinical outcome was associated with lower airway enrichment with an oral commensal (Mycoplasma salivarium). Increased SARS-CoV-2 abundance, low anti-SARS-CoV-2 antibody response and a distinct host transcriptome profile of the lower airways were most predictive of mortality. Our data provide evidence that secondary respiratory infections do not drive mortality in COVID-19 and clinical management strategies should prioritize reducing viral replication and maximizing host responses to SARS-CoV-2.


Subject(s)
Bronchoalveolar Lavage Fluid/microbiology , COVID-19/therapy , Respiration, Artificial , SARS-CoV-2/pathogenicity , Adaptive Immunity , Adult , Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Load , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , COVID-19/immunology , COVID-19/microbiology , COVID-19/mortality , Critical Illness , Female , Hospitalization , Humans , Immunity, Innate , Male , Microbiota , Middle Aged , Odds Ratio , Prognosis , Prospective Studies , Respiratory System/immunology , Respiratory System/microbiology , Respiratory System/virology , SARS-CoV-2/immunology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL